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Abstract

This conceptual article presents an integrated framework for mathematics education
positioning productive ambiguity, struggle, and failure as essential components of meaningful
learning. Productive ambiguity invites learners to explore and interpret uncertainty, fostering
curiosity and collaborative reasoning. Productive struggle focuses on sustained effort in navigating
complex tasks, emphasizing the development of connections between procedural and conceptual
understanding. Productive failure positions setbacks as valuable opportunities for reflection,
enhancing understanding and preparing learners for future challenges. The conceptual framework
comprises three interconnected phases, with ambiguity initiating exploration, struggle promoting
active engagement, and failure encouraging critical reflection. These phases operate in a dynamic
and recursive manner, offering a flexible model for iterative learning. Practical hypothetical
classroom scenarios demonstrate the application of this framework, showcasing its potential to

reimagine mathematics education as an exploratory and reflective practice.
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INTRODUCTION

A common critique of mathematics classrooms in their most traditional form includes their reliance on rigid
procedures and formulaic routines, overshadowing the subject’s potential to spark curiosity, foster creativity,
and nurture resilience (Lockhart, 2009; Su, 2020). Methods focused on rote memorization and algorithmic
problem-solving restrict students’ engagement with deeper mathematical concepts and critical reasoning
(Boaler, 2022; Lithner, 2008). Within this critique, a narrow approach reinforces the harmful belief that
mistakes signify failure, undermining learners’ confidence and their ability to tackle complex, real-world
problems (Kapur, 2008; Luzano, 2024). In an era that demands adaptability and analytical thinking, the
critique suggests that mathematics education must undergo a fundamental transformation (Gree et al., 2024;
Jansen, 2023).

Within such a critique, this paper advocates for a conceptual shift in mathematics education, proposing

a framework built around three interconnected ideas: productive ambiguity, productive struggle, and
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productive failure. Terms like ambiguity, struggle, and failure often carry negative connotations in everyday
language, suggesting something to be avoided or eliminated. Nevertheless, in the context of mathematics
education research, extensive literature on each of these concepts suggests that these should be celebrated as
vital components of the teaching and learning process. Although each concept is individually well-
documented, their combined impact remains underexplored. Together, they redefine mathematics as an
exploratory and dynamic discipline, advancing not only mathematical proficiency but also essential skills
such as resilience, creativity, and critical thinking.

This conceptual article explores the theoretical underpinnings of productive ambiguity, struggle, and
failure, drawing connections among these concepts to present an integrative framework for mathematics
education that responds to recent calls to move beyond isolated theory use, and instead engage in the
deliberate coordination and integration of theoretical constructs across traditions (Artigue, 2023; Bikner-
Ahsbahs et al., 2023; Kidron, 2023), as well as contribute meaningfully to the development of theoretical
frameworks (Mizoguchi, 2025). In this respect, our work aligns with Kirshner’s (2004) perspective on the
importance of enculturation' in mathematics education. Kirshner emphasizes that learning extends beyond
the acquisition of knowledge and skills to include the adoption of cultural dispositions through immersion in
community practices. Similarly, our approach seeks to advocate for learning environments where students
not only acquire conceptual understanding but also engage deeply with the sociocultural norms and practices
of ambiguity, struggle, and failure, promoting a holistic development aligned with the goals of enculturation.
Structured around three phases — ambiguity as a driver of exploration, struggle as a means of sustained
engagement, and failure as a catalyst for reflection and refinement — our framework highlights how these
phases operate both sequentially and recursively to enhance mathematical learning. Rather than making a
proposal for classroom practice, our use of practical scenarios illustrates the application of these concepts in
classrooms, offering educators actionable insights to reimagine mathematics as a space for inquiry and
innovation.

This paper presents a conceptual framework intended to guide iterative, design-oriented educational
research. Instead of proposing a validated model, the framework introduces theoretical conjectures that can
inform both pedagogical design and classroom practice. Foundational scholarship in design-based research
emphasizes the importance of generating and refining theoretical insight through cycles of enactment,
reflection, and revision (Cobb et al., 2003; Design-Based Research Collective, 2003; Sandoval, 2004). More
recent work reinforces this view, highlighting the role of early-stage theoretical articulation in shaping
usable, practice-informed knowledge (Hoadley & Campos, 2022; Yang & Lee, 2025). Making the core
design conjectures explicit at this stage supports the development of a robust conceptual foundation and sets

the stage for future empirical inquiry into the role of frameworks that guide mathematics education practice.

PRODUCTIVE AMBIGUITY

Productive ambiguity arises when unclear or multifaceted meanings challenge learners to explore, interpret,

1 We acknowledge Alan Bishop’s extensive contributions to the field of mathematical enculturation (e.g., Bishop, 1991).
However, we find Kirshner’s perspective on enculturation more pertinent to our work, as it directly addresses the practical
issues of teaching and learning in common school contexts. In contrast, Bishop’s anthropological frameworks are more
closely aligned with the domain of ethnomathematics.
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and resolve uncertainty. Rather than hindering understanding, ambiguity redefines mathematics as a dynamic
and exploratory discipline (Sterner, 2022) and has the potential to encourage exploration and discovery in
learning environments (Oliveri, 2011). A seminal contribution to this line of thinking is Gray and Tall’s
(1994) analysis of the duality between process and concept in arithmetic, which highlights how the inherent
ambiguity of mathematical symbols (e.g., “3 + 2 denoting both the process of addition and the resulting
sum) functions as a powerful feature of mathematical thought rather than as a defect. They describe this
amalgam of process, product, and symbol as the “procept”, emphasizing how successful mathematical
thinkers flexibly shift between these interpretations. Our use of productive ambiguity resonates with this
insight, but extends it beyond symbolic notation to encompass definitional, representational, and linguistic
forms that arise in classroom practice.

Definitional ambiguity occurs when terms have multiple valid interpretations depending on context.
For example, Bergman et al. (2024) examined the term trapezoid, which can refer to a shape with either one
or two pairs of parallel sides, depending on the definition. Students tasked with reconciling this discrepancy
engaged in mathematical reasoning, clarifying assumptions and refining their conceptual understanding.
Similarly, Kercher et al. (2022) investigated tasks where teachers evaluated alternative definitions of
continuity, such as whether a continuous function requires an unbroken graph or simply the absence of
breaks. These exercises encouraged teachers to deliberate and justify their reasoning, raising a deeper
appreciation for the flexible and evolving nature of mathematical concepts. Barwell (2005) provides another
example, where students interpreted the term “sharing” in a mathematical context. Although it often has
social connotations, the students negotiated its meaning in division, enriching their understanding through
discussion. Together, these cases illustrate how confronting definitional ambiguity sharpens analytical skills
and highlights the dynamic interplay between intuitive and formal reasoning.

Representational ambiguity arises when mathematical representations, such as diagrams or symbols,
support multiple interpretations. For instance, Marmur and Zazkis (2022) explored how unconventional

fractions like -1 stimulated debate among prospective teachers about their validity as fractions. While some

viewed these gssviolating traditional definitions, others recognized their structural equivalence to common
fractions. This debate enhanced participants’ understanding of fractional properties and flexibility in
interpretation. Similarly, Feldman et al. (2020) investigated how students interpreted ambiguous motion
graphs depicting distance and time. Without explicit instructions, students devised multiple interpretations
— focusing on slope, area under the curve, or specific data points — mirroring real-world problem-solving
where clarity emerges through exploration. Representations often act as both specific instances and general
exemplars, as Giardino (2017) emphasizes, noting that a triangle in Euclidean geometry simultaneously
represents a unique figure and all triangles. Foster (2011) extended this idea, categorizing ambiguity into
symbolic and paradigmatic, showing how ambiguous representations prompt alternative problem-solving
strategies that foster creativity and adaptability. Symbolic ambiguity refers to when the same symbol
represents different ideas or concepts; for example, the x sign indicates the multiplication of real numbers or
the cross product of vectors. Paradigmatic ambiguity refers to different assumptions about mathematical
representations. For example, the expression “5 + 2” may refer to both the process of addition and the object
resulting from this process (see also Gray & Tall, 1994).

Linguistic ambiguity often stems from words or symbols with multiple meanings. For instance, Barwell
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(2005) reports on how students grappled with the phrase “more than” in inequality problems, discovering its
nuanced mathematical implications through negotiation. Along the same lines, Peterson et al. (2020)
introduced the idea of “clarifiable ambiguity”, where imprecise statements like “the graph goes up” required
learners to specify whether they referred to slope, direction, or numerical values. Resolving such ambiguities
fosters precise communication and strengthens reasoning. In turn, Sterner (2022) explored polysemy, where
terms like “function” hold different meanings across disciplines, such as a relationship between variables in
mathematics or a biochemical role in biology. Tasks requiring students to define function across contexts
encourage adaptability and highlight connections between mathematical and scientific language. For
Priestley (2013), analogies and metaphors, being inherently ambiguous, are powerful for linking mathematical
concepts to familiar experiences, such as comparing proportional relationships to recipes. Such rhetorical
ambiguity fosters creativity and helps students bridge the gap between abstract structures and everyday
applications.

Encouraging productive ambiguity in the mathematics classroom is important because it transforms
uncertainty into a powerful driver of inquiry, critical thinking, and collaboration. Ambiguity challenges
learners to navigate complex ideas without predetermined answers, and cultivates a deeper engagement with
mathematical ideas, prompting learners to reconcile differing perspectives and explore novel connections
(Foster, 2011; Sterner, 2022). This approach redefines mathematics as an exploratory, dynamic discipline
rather than a static collection of rules, helping students build confidence in tackling open-ended problems
(Feldman et al., 2020; Marmur & Zazkis, 2022). The study of mathematics shifts from learning canonical
procedures and facts toward dialogue and construction of understanding, and the teaching of mathematics
toward skillful orchestration of productive conversations and the formation of classroom community in
which mathematics is something that people do rather than a set of methods or a collection of lenses on the
world (Diez-Palomar et al., 2021; Thanheiser, 2023). Moreover, embracing ambiguity creates a classroom
environment that values curiosity and creativity, where students collaboratively negotiate meaning and refine
their reasoning (Barwell, 2005; Peterson et al., 2020). Such an environment equips learners with the skills to
approach real-world challenges with both rigor and flexibility, addressing the complex, ambiguous nature of
problems they will encounter outside the classroom. In this way, productive ambiguity not only enhances
mathematical understanding but also nurtures a mindset of lifelong learning and innovation, aligning with
broader educational goals to prepare students as adaptable, creative, critical thinkers (Suzawa, 2013).

Productive ambiguity emerges most powerfully when teachers deliberately design or frame tasks to
invite multiple interpretations while resisting the urge to close discussion prematurely. Teachers introduce or
highlight uncertainty by designing tasks with multiple valid interpretations (whether definitional,
representational, or linguistic) while resisting the urge to prematurely close down discussion (Barwell, 2005;
Peterson et al., 2020). Their role is to frame ambiguity as an invitation to inquiry, supporting students to
articulate assumptions, justify reasoning, and engage in collective negotiation of meaning. This orchestration
resonates with research on classroom scaffolding, where teachers balance agency with guidance to sustain
meaningful inquiry (Hiebert & Grouws, 2007; Warshauer, 2015b). In this way, ambiguity is transformed
from a potential source of confusion into a resource for sense-making, critical thinking, and collaborative
reasoning. We note that the selection of tasks as well as the balancing of agency with guidance are themselves

rife with ambiguities for the teacher. If the teacher approaches their pedagogy as itself a confluence of
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ambiguity, struggle and failure, that is, embracing the framework we offer, we imagine a parallel and

complementary growth and development for them as well.

PRODUCTIVE STRUGGLE

Productive struggle focuses on the intellectual development that emerges from interacting with challenging
tasks. Defined as the deliberate and effortful engagement with meaningful tasks requiring persistence and
cognitive effort, productive struggle allows mistakes and difficulties to become valuable learning
opportunities. Through this process, learners develop resilience, critical thinking skills, and a stronger grasp
of mathematical concepts (Warshauer, 2015a; Zeybek, 2016). As a theoretical tool, it reframes mathematics
as a dynamic field that values effort, exploration, and persistence (Casler-Failing & Collins, 2022; Warshauer,
2015a). Rather than emphasizing immediate correctness, productive struggle encourages an iterative process
where learners confront uncertainty, work through complex problems, and build a deeper understanding—
not just of mathematical content, but also of the relative usefulness of different modes of inquiry and ways
of thinking (Boaler, 2022).

At its foundation, productive struggle involves engaging with tasks that challenge students’ existing
knowledge while encouraging exploration of mathematical concepts and structures. This approach moves
beyond rote or algorithmic solutions, inviting learners to investigate underlying relationships and conceptual
frameworks for a more comprehensive understanding (Russo et al., 2021). It often includes navigating
obstacles, identifying and addressing errors, and refining strategies to gain meaningful insights (Casler-
Failing, 2024; Granberg, 2016). For example, Granberg (2016) observed students using GeoGebra to address
errors in solving linear function problems, demonstrating how their struggles led to refined knowledge and
problem-solving strategies. Collaborative discussions further enhance this reflective process, enabling
learners to share diverse perspectives and improve their reasoning (Chen et al., 2024; Crawford, 2024).

The relationship between productive struggle and positive educational outcomes is well-supported in
mathematics education research. Engaging with high-cognitive-demand tasks can help learners connect
procedural fluency with conceptual understanding, ultimately strengthening their mathematical reasoning
(Casler-Failing, 2024; Warshauer, 2015a). Casler-Failing and Collins (2022) illustrated this with pre-service
teachers who grappled with robotics programming tasks that required iterative problem-solving and
conceptual reasoning, helping them appreciate the role of struggle in learning. This approach also cultivates
resilience and a growth mindset, encouraging learners to view challenges as opportunities for development
(Russo et al., 2021). Murawska (2018) described how real-world tasks, such as verifying population density
claims, encouraged students to persist and engage in critical thinking. Tasks like these allow students to
practice reasoning, modeling, and argumentation, making their learning experiences more meaningful and
impactful (Bolyard et al., 2023; Chen et al., 2024). Additionally, in cases where students attempt to solve
problems before receiving formal instruction, productive failure has been shown to enhance understanding
and support long-term retention of concepts (Biccard, 2024; Kapur, 2016). Biccard (2024) identified
mathematical modeling tasks as particularly effective in promoting productive struggle, as they often present
multiple solution pathways and ambiguities that require persistence to resolve.

Effective implementation of productive struggle in classrooms requires thoughtful task design, a

supportive environment, and appropriate scaffolding. Tasks should be designed to challenge students without
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overwhelming them, encouraging exploration within their zones of proximal development and providing
multiple entry points for engagement (Casler-Failing, 2024; Melani et al., 2024). For example, Melani et al.
(2024) found that students working on mathematical modeling tasks initially struggled to connect real-world
contexts with mathematical frameworks but ultimately developed deeper conceptual clarity through the
process. Thompson (2023) found that “tinkering” and experimentation may not lead to a desired result yet
have the potential to generate valuable mathematical discoveries and to cultivate self-images of mathematics
doers and creators. Creating a classroom culture where struggle is normalized and mistakes are seen as
integral to learning helps build students’ confidence in tackling complex problems (Casler-Failing & Collins,
2022; Warshauer, 2015b). Teachers play a key role in maintaining cognitive rigor while supporting students
to persist independently, avoiding the temptation to simplify tasks too quickly (Chen et al., 2024; Townsend
et al., 2018). Professional development workshops, such as those described by Bolyard et al. (2023), have
helped teachers learn how to guide students through challenging tasks while maintaining high standards of
engagement and learning. Collaboration and reflection also play a crucial role, allowing students to refine
their understanding by engaging with diverse viewpoints and participating in active problem-solving
(Bolyard et al., 2023; Crawford, 2024).

Productive struggle contributes to more thoughtful and sustained learning by emphasizing effort,
inquiry, and reflection over quick solutions. It encourages resilience and critical thinking, equipping learners
with the confidence and adaptability to approach complex problems. Teachers who foster environments
where struggle is valued help students develop the perseverance and flexibility they need to succeed in
mathematics and beyond (Casler-Failing & Collins, 2022; Kapur, 2016; Warshauer, 2015a). Such teachers
would see themselves as engaged in their own productive struggle, grappling with the ambiguities and
challenges of teaching in ways that promise confidence and adaptability over time instead of quick solutions

or recipes for their teaching.

PRODUCTIVE FAILURE
Productive failure is distinct from productive struggle, though both involve students grappling with
challenging tasks. Productive struggle emphasizes persistence, resilience, and iterative refinement of ideas
as learners work through difficulties, with the struggle itself fostering deeper understanding (Warshauer,
2015a; Russo et al., 2021). By contrast, productive failure is a pedagogical design in which initial failure is
deliberately expected. Students are first immersed in complex, ill-structured problems without prior
instruction, leading them to generate incomplete or flawed solutions. These unsuccessful attempts are not
incidental but function as a preparatory phase: they activate prior knowledge, expose conceptual gaps, and
prime learners to attend more closely to subsequent instruction (Kapur, 2010, 2016; Kapur & Bielaczyc,
2012; Loibl & Leuders, 2019). In this sense, the struggle embedded in productive failure differs from
productive struggle. Rather than being an end in itself; it is strategically orchestrated to make later instruction
more meaningful and to support long-term conceptual consolidation (Boaler, 2022; Sinha & Kapur, 2021).
In the initial problem-solving phase, students are tasked with devising diverse solutions to novel
challenges using their existing knowledge. These attempts often yield flawed or incomplete solutions,
activating crucial cognitive processes. Importantly, even when students do not reach a correct solution, the

process itself offers valuable opportunities for learning. Struggling with the problem reveals gaps in
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understanding and sparks the identification of strategies, patterns, or questions that deepen their engagement.
This “learning along the way” (Bateson, 1994; Schultz, 2018) cultivates skills such as critical thinking and
adaptability, enabling students to tinker with ideas and refine their approaches. By the time students progress
to a phase where their knowledge becomes more structured and cohesive, they are better equipped to
assimilate new information. This learning sequence (transitioning from open exploration to more structured
teacher-led instruction/guidance) has been shown to promote longer-term learning outcomes compared to
the traditional instruction-first approach (Loibl & Leuders, 2019; Sinha & Kapur, 2021).

Research consistently demonstrates the effectiveness of productive failure, particularly in STEM
education. Kapur’s (2010) study with 7th-grade mathematics students in Singapore illustrates the approach’s
benefits. Students in the productive failure condition tackled problems related to rate and speed without
scaffolding before receiving instruction. Despite their initial struggle, these students significantly
outperformed their peers in the direct instruction condition in measures of conceptual understanding and the
ability to transfer their knowledge to novel problems. Similar effects were observed in studies of standard
deviation and linear functions, where initial exploration prepared students to consolidate knowledge more
effectively during formal instruction (Granberg, 2016; Kapur, 2014).

Beyond mathematics, productive failure has shown promise in other STEM fields such as physics and
computer science. For example, high school students grappling with Newtonian kinematics through ill-
structured problems exhibited better transfer of knowledge compared to peers who received direct instruction
(Kapur, 2008). Additionally, in computer science education, productive failure interventions have been used
to teach topics like pattern recognition and algorithms. While some studies failed to find significant differences
in factual retention, they highlighted qualitative benefits such as broader exploration of solution spaces and
increased engagement (Steinhorst et al., 2024). However, the approach is not universally effective. Research
in non-STEM domains like social sciences has yielded mixed results. Nachtigall et al. (2020) found that
productive failure did not consistently outperform direct instruction in teaching social science research
methods. These findings suggest that productive failure’s effectiveness may be influenced by the structuredness
of the domain and the clarity of canonical solutions. Domains with well-defined concepts and methods, such
as mathematics and physics, may provide a better fit for productive failure than less-structured fields.

Several key mechanisms explain why productive failure often leads to better learning outcomes. The
first is the activation of prior knowledge. During the initial phase, students draw on their existing cognitive
frameworks to attempt solutions. These efforts engage their schemas, making them more receptive to new
information presented during instruction (Loibl & Leuders, 2019). Second, struggling with problems is an
integral part of the learning process, prompting students to engage deeply with the material and recognize the
value of effort as a sign of cognitive growth. This productive struggle activates neural pathways, making the
brain more receptive to new information and fostering connections that contribute to long-term understanding
(Boaler, 2022). Such awareness primes them to focus more attentively on instruction, enabling them to revise
and refine their mental models (Kapur & Bielaczyc, 2012; Nachtigall etal., 2020). Another critical mechanism
is the recognition of deep features of the targeted concept. In the instructional phase, students’ erroneous
solutions are contrasted with canonical solutions, helping them identify and understand the fundamental
principles underlying the problem (Loibl & Leuders, 2019). This process not only consolidates knowledge

but also enhances its transferability to new contexts, as students develop a deeper understanding of how
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concepts interconnect (Sinha & Kapur, 2021). Collaboration is another feature that amplifies the benefits of
productive failure. Group problem-solving activities allow students to pool their knowledge, explore multiple
solution paths, and critique each other’s reasoning. This collaborative environment fosters the co-construction
of knowledge and provides opportunities for peer learning, further enhancing the learning experience
(Steinhorst et al., 2024).

The design of productive failure interventions is crucial to their success. Tasks must be carefully crafted
to balance complexity and accessibility, ensuring they are challenging enough to provoke failure but not so
difficult that students become frustrated or disengaged. This “sweet spot” of complexity allows students to
generate diverse solutions without being overwhelmed (Loibl & Leuders, 2019; Sinha & Kapur, 2021).
Equally important is the instructional phase that follows problem-solving. This phase should explicitly
address the errors and misconceptions evident in students’ initial attempts, using them as springboards for
deeper learning. Comparing and contrasting erroneous solutions with correct ones is particularly effective in
supporting conceptual change and helping students refine their understanding (Loibl & Leuders, 2019).
Moreover, providing scaffolds during the instructional phase can help students integrate new knowledge
without cognitive overload (Kapur, 2016). On the other hand, tinkering environments (Thompson, 2023) are
more open-ended without specific expectations, allowing for a craft mentality that enables experimentation
without the pressures of creating something that ‘looks like math’. Shifting the core of what counts as
mathematics moves the purposes of mathematics education away from learning traditional procedures
toward the facilitation of ‘being mathematical’ in one’s orientation to the world. Similarly, a professional
perspective on pedagogy for the teacher that reframes teaching “failures” as essential for personal development
enables teachers themselves to worry less about failures and to become increasingly aware of deeper features
of student learning that can guide them away from proscribed methods toward forms of masterful orchestration

of classroom activity.

CONNECTIONS AMONG THE CONCEPTS

Overlapping features

The concepts of productive ambiguity, productive struggle, and productive failure share foundational
principles aimed at fostering deeper learning by engaging students with complexity and uncertainty. Central
to their overlap is the role of disequilibrium, which challenges students’ existing frameworks of understanding
and encourages active inquiry. For example, ambiguity frequently arises in tasks that present multiple
interpretations or incomplete definitions, such as reconciling differing definitions of a trapezoid (Bergman et
al., 2024). Similarly, productive struggle emphasizes sustained engagement with challenging tasks that resist
immediate solutions, as observed in iterative problem-solving strategies with tools like GeoGebra (Granberg,
2016). Productive failure complements these approaches by framing mistakes and incomplete solutions as
essential steps toward deeper conceptual understanding, as demonstrated in research on rate and speed tasks
(Kapur, 2010). All three concepts emphasize critical thinking and active engagement. Ambiguity invites
learners to explore and negotiate meanings, while struggle requires them to refine strategies and navigate

obstacles (Casler-Failing, 2024). Failure, on the other hand, serves as a catalyst for reflection, preparing
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students to assimilate new knowledge during subsequent instruction (Loibl & Leuders, 2019). Together,
these approaches redefine mathematics as a dynamic discipline rooted in inquiry and persistence, aligning
with broader educational goals of cultivating adaptable and creative thinkers (Sterner, 2022). This perspective
echoes Gray and Tall’s (1994) observation that ambiguity in notation underpins flexible mathematical
thinking, and that its absence can lead to rigid, procedural approaches. By integrating ambiguity with struggle
and failure, our framework broadens this idea into a more general account of how learners can harness
uncertainty productively. Mathematics is in this respect the curricular space for exploiting the motivational

aspects as well as supporting learners’ appreciation of uncertainty (Meaney, 2017).

Distinctive roles

Despite their interconnectedness, each concept uniquely contributes to the learning process. Productive
ambiguity emphasizes exploration and interpretive reasoning, challenging students to navigate uncertainty
and refine their understanding through discussion and deliberation (Oliveri, 2011; Sterner, 2022). Productive
struggle focuses on the intellectual development that arises from perseverance, helping learners connect
procedural fluency with conceptual understanding (Casler-Failing & Collins, 2022; Warshauer, 2015a).
Meanwhile, productive failure explicitly incorporates initial setbacks as mechanisms for learning, using
errors to activate prior knowledge, highlight conceptual gaps, and facilitate schema refinement during
instruction (Kapur, 2016; Loibl & Leuders, 2019).

Integrated process

These concepts can function sequentially or interactively within mathematics learning. In a sequential
framework, ambiguity might initiate the process by framing tasks with multiple valid interpretations.
Struggle then emerges as students engage with these tasks, encountering obstacles that require sustained
effort and refinement. Failure naturally follows as an outcome of these efforts, offering opportunities for
reflection and deeper understanding during targeted instruction (Kapur & Bielaczyc, 2012). Alternatively,
the concepts often overlap dynamically within a single task. For instance, an ambiguous problem may
simultaneously elicit struggle and failure as students wrestle with multiple interpretations, refine their
reasoning, and identify misconceptions. These intertwined processes exemplify how ambiguity, struggle,
and failure collectively support robust and meaningful learning experiences.

Ambiguity, struggle, and failure may appear in classrooms through different routes. In some cases, they can
be deliberately introduced by the teacher through the design of tasks, questions, or orchestrated discussion.
In other cases, they arise naturally from students’ engagement as they encounter difficulties, conflicting
interpretations, or incomplete solution paths. Teachers play a crucial role in recognizing and leveraging both
kinds of moments, reframing them as opportunities for inquiry, persistence, and reflection rather than as

obstacles to be avoided.

AN INTEGRATIVE FRAMEWORK FOR MATHEMATICS LEARNING

Traditional perspectives on mathematics learning often portray it as a linear progression focused on skill
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acquisition and knowledge retention. Yet real-world problem-solving rarely follows such predictable paths.
In contrast, an integrative framework that embraces productive ambiguity, productive struggle, and productive
failure offers a dynamic, recursive approach. This approach reflects recent models of theory generation in
mathematics education that prioritize building coherence among diverse conceptual traditions rather than
enforcing a single unified theory (Artigue, 2023; Bikner-Ahsbahs et al., 2023), and it emphasizes exploration,
persistence, and reflection as essential components in fostering conceptual understanding, critical thinking,

and resilience.

Phases of the framework
The proposed framework (see Figure 1) operates through three interconnected phases: ambiguity, struggle,
and failure. Together, these phases create a dynamic environment where learners confront complexity,

navigate challenges, and transform errors into opportunities for growth.
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Figure 1. A conceptual framework for productive ambiguity, struggle, and failure
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Phase 1 — Productive ambiguity: Opening exploration

Ambiguity invites students into tasks with multiple valid interpretations or undefined parameters, compelling
them to confront uncertainty. Far from being a hindrance, this phase redefines mathematics as a dynamic and
exploratory discipline, cultivating curiosity and creativity (Sterner, 2022). For instance, tasks involving
definitional ambiguity, such as reconciling whether a trapezoid has one or two pairs of parallel sides,
challenge learners to deliberate and justify their reasoning, thereby sharpening their conceptual understanding
(Bergman et al., 2024). Representational challenges, like interpreting unconventional motion graphs, further
encourage learners to explore diverse perspectives and foster flexible thinking (Feldman et al., 2020). These
explorations align with mathematical practices such as reasoning abstractly and quantitatively, emphasizing
the exploratory nature of the discipline. Teachers play a crucial role here by deliberately introducing or
highlighting ambiguity, ensuring that uncertainty provokes inquiry without causing unproductive confusion.
In our framework, we place the teacher at the center as working within their own ambiguity, struggles and
failures, introducing this ambiguity in order to invite students into these opportunities. Later, the teacher

facilitates an emerging desire for ambiguity and struggle as catalysts for growth, resilience and innovation.

Phase 2 — Productive struggle: Sustained engagement

Struggle emerges as students engage deeply with tasks that resist immediate solutions, cultivating persistence
and resilience. This phase builds procedural fluency and conceptual understanding through iterative problem-
solving and collaborative refinement (Russo et al., 2021). For example, using tools like GeoGebra, students
iteratively refine geometric constructions, address errors, and engage in critical discussions that deepen their
mathematical reasoning (Granberg, 2016). The intellectual growth facilitated by productive struggle comes
from a focus on effort and reflection rather than quick correctness. Learners are encouraged to construct
viable arguments and evaluate diverse strategies, strengthening their confidence in approaching mathematics
as an evolving and rich discipline (Warshauer, 2015a). Teacher support in this phase involves scaffolding
perseverance: monitoring when to intervene, maintaining cognitive rigor, and encouraging students to persist
without prematurely simplifying the challenge. Here the teacher facilitates an appreciation for ambiguity and

struggle as necessary for failure to be productive and creative.

Phase 3 — Productive failure: Reflection and refinement

Reframing failure as a constructive phase of learning creates critical opportunities for reflection and
conceptual breakthroughs. Errors reveal gaps in understanding and prompt targeted instruction that refines
conceptual frameworks. Research demonstrates the value of engaging with ill-structured problems, such as
designing mathematical models for real-world phenomena, as a means of priming students for deeper
learning during subsequent instruction (Kapur, 2010). Contrasting students’ erroneous solutions with
canonical approaches fosters a deeper understanding of underlying principles and enhances the transferability
of knowledge (Loibl & Leuders, 2019). Normalizing failure as an integral part of the learning process
supports resilience and a growth mindset, equipping learners to address complex problems confidently. In
this phase, teachers help frame errors constructively, guiding students in comparing flawed and canonical
solutions so that setbacks become opportunities for generative reflection, and facilitating the appreciation for

failure and struggle as intertwined processes of growth, learning, persistence, patience, and resilience.
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A cyclic and recursive process

The integrative framework operates as a recursive process with feedback loops among productive ambiguity,
productive struggle, and productive failure, enabling continuous refinement and deeper engagement. These
phases are not strictly sequential; ambiguity within a task often simultaneously elicits struggle and failure as
students explore multiple interpretations, refine strategies, and address misconceptions. Ambiguity sparks
exploration, leading to struggle as learners engage deeply with challenging tasks. Struggle, in turn, primes
learners for the insights generated through failure, which often loops back into further ambiguity and inquiry.
For instance, in tasks requiring mathematical modeling of real-world phenomena, ambiguity in data
interpretation leads to struggle with model construction and eventual failure in initial attempts. These failures
prompt reflection and refinement, including reframing initial questions, reconsidering the purpose of the
mathematical activity, or exploring alternative approaches (Biccard, 2024; Kapur, 2016). Dialogue with
peers or instructors often becomes a critical element of this process, enabling learners to articulate reasoning,
exchange ideas, and collaboratively refine strategies. Revisiting tasks after initial engagement allows learners
to deepen their understanding, build connections between concepts, and refine their problem-solving
strategies. This iterative process, which can occur within various instructional models (whether tasks and
instruction are distinct or seamlessly integrated), redefines mathematics as a dynamic cycle of inquiry,
persistence, and reflection. Such an approach equips learners to tackle complex challenges and fosters a

mindset attuned to exploration and growth (Boaler, 2022).

ILLUSTRATIVE SCENARIOS: BRIDGING THEORY AND PRACTICE

To illustrate how productive ambiguity, struggle, and failure can manifest across different areas of school
mathematics, we present four hypothetical classroom scenarios spanning the domains of algebra/functions,
geometry/measurement, data/modelling, and number/patterns. These domains were chosen to demonstrate
breadth rather than exhaustiveness, since together they capture key strands of the mathematics curriculum
where uncertainty and challenge can be deliberately harnessed. Mathematical modelling appears in more
than one scenario because such tasks naturally invite open interpretation, iterative reasoning, and the
possibility of error; nevertheless, the inclusion of geometry- and number-focused tasks shows that our
framework applies equally well beyond modelling contexts. The scenarios are not intended as prescriptions
for practice but as illustrative contrasts that highlight how ambiguity, struggle, and failure can take different
forms across mathematical content areas and grade levels. At the same time, they are grounded in relevant
literature and draw on the tradition of critical fiction (e.g., Ryan, 2025; Hrastinski, 2023, 2025), using
narrative as a methodological tool to surface the often-overlooked social and cultural dynamics of classroom
practice. Together, these scenarios offer a practical lens through which teachers and researchers can reimagine
classrooms as dynamic spaces for exploration, persistence, and reflective learning.

To clarify how the cyclical process operates across scenarios, Table 1 summarizes how each example
illustrates productive ambiguity, productive struggle, and productive failure in relation to the recursive

framework.
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Productive ambiguity Productive struggle R UNCREIULT

Scenario (domain) . (expected/leveraged
(entry point) (challenge) errors)
Graphs of linear functions ~ Missing axis labels; Calculating slope and Misidentifying rise/run;
(algebra/functions) uncertain context of intercept from incorrect assumptions
variables incomplete data about axes
Area and perimeter of a Terms like Balancing algebraic ~ Exceeding limits;
garden (geometry/ “approximately” and equations with misinterpreting cost
measurement) “reasonable cost” open geometric constraints structures
to interpretation
Virus dataset (data/modelling Unclear time scale Constructing and Misestimating growth
with exponential functions)  (days vs. weeks) refining exponential ~ rates; misreading dataset
models against messy
data
Tile patterns (numbers/ Open-ended invitation: Translating visual Missing the doubling
patterns) multiple ways to see pattern into numeric/  structure; miscounting
and extend the pattern  general rule totals

Table 1. Alignment of scenarios with productive ambiguity, struggle, and failure

Scenario 1: Exploring graphs of linear functions

In a high school algebra classroom, students are invited to identify the equation of a line based on a partially
labeled graph. The graph includes missing axis labels and an ambiguous starting point for the line, prompting
students to interpret whether the x-axis represents time, distance, or another variable. This deliberate use of
productive ambiguity challenges students to make assumptions and justify their reasoning, promoting
interpretive thinking and collaborative discussions. For instance, some groups assume the axis represents
time, while others interpret it as distance, leading to a class-wide debate about the role of contextual
information in mathematical modeling. This approach aligns with the value of ambiguity in encouraging
deeper engagement and understanding, as described by Kapur (2010, 2014) in the productive failure
framework.

As the activity continues, students engage in productive struggle by attempting to calculate the slope
and y-intercept of the line using incomplete data. They grapple with errors, such as misidentifying the rise
and run, and refine their understanding of proportional relationships through persistent effort. Peer
collaboration further enhances their problem-solving processes, as groups share strategies and refine their
approaches. Such collaborative environments are identified as critical for productive struggle, enabling
students to persist and learn through challenge (Hiebert & Grouws, 2007; Warshauer, 2015a).

The teacher compares students’ equations and predictions for line transformations with a canonical
solution, highlighting common misconceptions and errors. This integration of productive failure allows
students to reflect on their flawed assumptions and recalibrate their understanding, consistent with research
that highlights the value of error analysis in developing conceptual clarity (Kapur & Bielaczyc, 2012).
Through this reflection, students revisit their initial interpretations of the graph’s ambiguous axes and
redefine their assumptions. This process sparks new cycles of inquiry, where students test refined models and
challenge each other’s conclusions, reinforcing the recursive nature of learning as identified in productive

struggle frameworks (Young et al., 2024).
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Scenario 2: Investigating area and perimeter relationships

In a middle school geometry class, students are tasked with designing a rectangular garden with specific area
and perimeter constraints, balancing cost and material use. The problem’s ambiguous phrasing, such as
“approximately 20 square meters” and “reasonable cost”, introduces productive ambiguity, requiring students
to negotiate definitions and justify their interpretations. Some groups interpret “approximately” as a 10%
margin of error, while others use stricter criteria, sparking debates about precision and practicality. This
ambiguity primes students to think critically about mathematical definitions and their real-world implications,
consistent with Zeybek’s (2016) findings on ambiguity in geometry tasks.

As students calculate dimensions that meet the constraints, they encounter productive struggle by
grappling with algebraic equations and geometric reasoning. They test various combinations of length and
width, iteratively refining their models when calculations exceed the cost constraints. This process strengthens
their understanding of the relationship between area and perimeter while encouraging resilience and critical
thinking, as emphasized by Kapur (2010) and Warshauer (2015b) in their discussions of high-cognitive-
demand tasks.

During the productive failure phase, students present their garden designs and identify errors, such as
exceeding perimeter limits or misinterpreting the cost structure. The teacher uses these mistakes to highlight
key misconceptions, prompting students to revisit their definitions of “approximately” and “reasonable
cost.” This renewed focus on ambiguity initiates another cycle of exploration and refinement, as students
revise their designs with greater precision and deeper insight into mathematical modeling, a process
documented by Young et al. (2024).

Scenario 3: Modeling real-world data with exponential functions

In an advanced high school mathematics class, students analyze a dataset modeling the spread of a virus. The
dataset includes missing contextual details, such as whether time is measured in days or weeks, introducing
productive ambiguity that compels students to make and justify assumptions. This ambiguity leads to diverse
interpretations, as some students assume weekly measurements while others posit daily increments, sparking
class discussions on how assumptions influence modeling outcomes. This aligns with research by Kapur
(2014) on the value of exploring ill-defined problems in building conceptual understanding.

Students engage in productive struggle as they attempt to create an exponential model predicting future
infection rates. They encounter discrepancies between their predictions and observed data, grappling with
the complexities of exponential growth. Through iterative adjustments and collaborative discussions,
students refine their models, gaining a deeper understanding of the relationship between mathematical
representations and real-world phenomena, as highlighted by Russo et al. (2021) in their analysis of teacher
strategies during challenging mathematical tasks.

The teacher presents a well-calibrated model and contrasts it with students’ predictions, highlighting
common errors such as misestimating growth rates or misinterpreting the dataset’s structure. This phase of
productive failure enables students to reflect on their reasoning and refine their analytical skills. Encouraged
by the teacher, students revisit the ambiguous aspects of the dataset, exploring how adjusting assumptions
impacts their models. This recursive process allows them to cycle through ambiguity, struggle, and failure

again, leading to progressively more accurate and nuanced models.
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Scenario 4: Exploring patterns with multiplication

In a 4th-grade classroom, students investigate a visual pattern involving a grid of colored tiles, where the
number of tiles doubles with each successive row. The task is designed to be open-ended by allowing for
multiple approaches and interpretations: “What patterns do you notice? Can you predict how many tiles will
be in the 10th row?” Rather than prescribing a specific method, the question invites students to explore
various strategies, such as visualizing the pattern, creating a table, or using mathematical reasoning. This use
of productive ambiguity encourages diverse perspectives and sparks discussion about growth patterns and
representations, aligning with Granberg’s (2016) findings on the value of exploratory tasks in engaging
students.

As students attempt to describe the pattern, they engage in productive struggle, grappling with
translating visual patterns into mathematical expressions. Many initially miscalculate totals or fail to
recognize the doubling structure, requiring persistence and iterative problem-solving to refine their
understanding. Peer discussions help clarify misconceptions, as students collaboratively explore different
approaches to represent the pattern numerically and visually. These activities reflect the benefits of scaffolding
and collaboration in supporting productive struggle, as noted by Warshauer (2015b) and Lemley et al. (2019).

In the final phase, the teacher introduces a symbolic representation of the pattern using powers of two,
comparing it to students’ earlier strategies. This phase of productive failure highlights the value of errors in
deepening understanding, as discussed in Kapur’s (2010, 2014) research on productive failure. The teacher
encourages students to revisit the ambiguous aspects of the task, such as identifying different ways to predict
totals for future rows. This renewed exploration launches another cycle of ambiguity, struggle, and failure,

reinforcing the recursive and iterative nature of the learning process, as described by Young et al. (2024).

DISCUSSION

The significance of this conceptual framework lies in its potential to challenge entrenched practices in
mathematics education and offer a new way to approach learning. Mathematics classrooms often focus on
procedural correctness over deeper inquiry, limiting opportunities for creativity and critical thinking. This
framework suggests a different approach, treating ambiguity as a starting point for exploration, struggle as
an essential part of engagement, and failure as a steppingstone to understanding. In doing so, we also build
on Gray and Tall’s (1994) seminal account of ambiguity, positioning our framework as an extension that
connects their insights on symbolic duality with broader classroom practices involving struggle and failure.
These elements together redefine the learning process as dynamic, ongoing, and reflective. Its importance is
particularly clear in today’s world, where building resilience and adaptability is critical. The framework
aligns with broader goals of helping students develop skills for handling the complexities of real-world
problem-solving. It also encourages classrooms to reflect the cyclical nature of real mathematical inquiry,
providing practical guidance for anyone working to create more meaningful learning experiences. Our work
is important, especially with the concept of VUCA receiving increasing attention in educational discourse
(see, e.g., Canzittu, 2022; Sarid & Levanon, 2023; Stein, 2021). VUCA stands for volatility (the rate and

unpredictability of change in a situation), uncertainty (a lack of clarity about the present or future outcomes),
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complexity (the involvement of multiple interconnected variables and factors that make understanding and
decision-making difficult), and ambiguity (situations where the meaning of an event or condition is unclear
and open to interpretation). Addressing VUCA in educational contexts helps build resilience, adaptability,
and critical thinking. These are essential skills that enable teachers and students to navigate challenges and
thrive in an ever-changing world.

While our framework emphasizes the centrality of student agency in inquiry, engagement, and
reflection, these processes cannot be understood as entirely student-driven. Teacher support remains essential
for sustaining productive learning. In the ambiguity phase, teachers design or highlight uncertainty in ways
that stimulate curiosity while avoiding unproductive confusion. During struggle, teachers provide scaffolding
that sustains perseverance and maintains cognitive rigor without prematurely removing challenge. In the
failure phase, teachers frame errors as legitimate learning opportunities and guide students in making
reflective connections between flawed and canonical solutions. In this sense, the role of the teacher is not to
diminish student-led activity but to orchestrate the conditions under which exploration, engagement, and
reflection become generative. This stance resonates with research emphasizing classroom orchestration and
scaffolding as mechanisms for balancing agency and guidance (e.g., Hiebert & Grouws, 2007; Kapur &
Bielaczyc, 2012; Warshauer, 2015b). Equally important are the broader classroom conditions that allow
ambiguity, struggle, and failure to be experienced as productive rather than discouraging. These conditions
include the cultivation of a safe classroom climate where risk-taking and mistake-making are normalized
(Boaler, 2022; Warshauer, 2015b), the use of scaffolding and inclusive practices that ensure all learners can
persist meaningfully with challenging tasks (Casler-Failing & Collins, 2022; Townsend et al., 2018), and the
teacher’s orchestration of discussions that balance exploration with conceptual rigor (Hiebert & Grouws,
2007). Without such conditions, ambiguity risks collapsing into confusion, struggle may devolve into
frustration, and failure can be perceived as deficit rather than opportunity.

Our framework stands out because of its integrative approach. Similar to the way Kidron (2023) shows
that comparing how different theories anticipate student thinking can lead to stronger designs, our work
combines ideas that are usually studied separately, addressing concerns such as those raised by Mizoguchi
(2025) about the need for contributions that advance rather than simply apply educational theory. Productive
ambiguity, struggle, and failure have been studied individually in education research, but this is the first clear
attempt to connect them into a single framework. This connection offers a more complete picture of how
these ideas work together to improve learning. It provides a way to think about mathematics education as an
iterative process where students tackle challenges, engage deeply with the material, and reflect on their
progress. As Kirshner (2000) highlights, framing pedagogical strategies with clear, theory-based guidance
can empower teachers to design tasks that cultivate exploration, persistence, and thoughtful reflection, and
also to recognize when to expect their presence. For example, exercises designed for habituation should
minimize ambiguity, puzzles designed for the promotion of persistence, curiosity and courage emerge from
non-routine activity often unrelated to contemporaneous curricular objectives, and probes selected for better
understanding of students’ conceptual understanding typically challenge students at the boundaries of their
knowledge. Kirshner’s (2002) cross-disciplinary approach parallels this framework’s focus on ambiguity,
struggle, and failure as interrelated components of learning. This approach is not just theoretical; it has

practical applications. It gives a structure for designing tasks that encourage exploration, persistence, and
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thoughtful reflection. Framing mathematics learning as a blend of ambiguity, struggle, and failure offers a
clearer understanding of these ideas while showing how they can be used in real classrooms.

The adaptability of the proposed framework depends on its application across diverse cultural contexts,
as societal and educational norms strongly influence responses to ambiguity, struggle, and failure (Ansalone,
2009; Galvan et al., 2011). In East Asian education systems, where high-stakes performance and rote learning
are often emphasized, ambiguity and failure may be viewed negatively. For example, in Japan, while lesson
study promotes localized classroom innovation, it frequently lacks formal theorization and may conflate
pedagogical practice with academic research (Mizoguchi, 2025). As a result, learners in such contexts often
struggle with open-ended tasks that lack clear parameters or definitive answers (Richmond, 2007; Wang &
Tai, 2024). In contrast, educational systems emphasizing exploratory and inquiry-based learning, such as
those in Nordic countries, tend to normalize uncertainty and regard mistakes as integral to the learning
process (Pedersen & Haavold, 2023). In addition to cultural influences, social class significantly shapes
students’ encounters with ambiguity and failure. Educational experiences often align with the expectations
for specific social classes, shaping how individuals respond to uncertainty and problem-solving tasks (Gates,
2019; Lubienski, 2000). For instance, curricula for working-class students tend to focus on following
directions and performing repetitive tasks, which require little problem-solving or engagement with
ambiguity. In contrast, middle-class curricula often emphasize creativity and inquiry, fostering skills
necessary for professional and creative careers. Meanwhile, elite classes are often trained to leverage the
work of others, focusing on management and strategic decision-making (Bukodi et al., 2024). These systemic
differences indicate that engaging with ambiguity and productive failure aligns most closely with middle-
class educational practices, as formal schooling systems often uphold and perpetuate middle-class norms,
implicitly or explicitly marginalizing the experiences and cultural capital of lower social classes (Byrne,
2009). Addressing these cultural and social class differences requires intentional framing and scaffolding.
Ultimately, the framework’s success lies in its capacity to adapt to the unique educational environments,
cultural expectations, and social class contexts where it is implemented, ensuring inclusivity and effectiveness
across diverse settings.

There are, however, some limitations to this framework. As a conceptual model, it has not yet been
tested widely in practice, though similar ideas have been applied in early childhood environments. For
instance, Meaney (2017) observed that toddlers signal uncertainty to supervising adults through behaviors
such as whining. In response, the adults offer support by maintaining proximity as the child works through
their problem. Questions about relevance and scalability in different classroom settings remain for this
framework, grounded in theory and examples from the literature. Additionally, there are concepts that could
be added to make the framework stronger. For example, using metacognitive strategies might help students
manage ambiguity, and building emotional resilience could provide extra support during moments of struggle
(for more, see Boaler, 2022). Considering cultural differences — such as how various classroom norms and
values shape responses to ambiguity and failure — could also add valuable depth. Practical challenges also
need to be addressed. Designing tasks that are both challenging and accessible requires careful planning to
ensure students stay engaged without feeling overwhelmed. Teachers may need additional training or
resources to use this framework effectively and to create an environment where ambiguity, struggle, and

failure are seen as natural parts of the learning process.
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The next step is to move this framework from theory to practice. Classroom activities need to be
designed with productive ambiguity, struggle, and failure at their core. These tasks should be open-ended and
allow for multiple ways of thinking, helping students explore, question, and refine their understanding.
Research is needed to examine how this framework impacts students’ mathematical reasoning, resilience,
and retention of knowledge. Comparative studies across subjects and age groups could provide valuable
insights into their broader use. Future work should also consider related factors, such as how collaboration,
self-reflection, and emotional support could enhance the framework. Adding these dimensions could make it
more adaptable and effective for a wide range of learners.

This framework presents a fresh perspective on mathematics education, placing curiosity, persistence,
and reflection at the heart of learning. The integration of productive ambiguity, struggle, and failure offers a
structured way to approach complex ideas and make learning more meaningful. Although still in the early
stages, it has great potential to change how mathematics is taught and how students experience the subject.

Ongoing research and refinement will be essential to fully realize what this framework can achieve.
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